For distillation services, as in condensate stabilization, tray design is well understood, and many engineers are more comfortable with trays than with packing. In the past, bubble cap trays were the standard. However, they are not commonly used in this service anymore. Sieve trays are inexpensive but offer a very narrow operating range when compared with valve trays. Although valve trays offer a wider operating range than sieve trays, they have moving parts and so may require more maintenance.
High capacity/high efficiency trays can be more expensive than standard valve trays. However, high capacity/high efficiency trays require smaller diameter towers, so they can offer significant savings in the overall cost of the distillation tower. The high capacity/high efficiency tray can also be an ideal candidate for tower retrofits in which increased throughputs are required for existing towers.
Random packing has traditionally been used in small diameter (<20 in.) towers. This is because it is easier and less expensive to pack these small diameter towers. However, random packed beds are prone to channeling and have poor turndown characteristics when compared with trays. For these reasons, trays were preferred for tower diameters greater than 20 in. In recent years an improved understanding of the impact of high pressure on packing performance has been gained. Improved vapor and liquid distributor designs and modified bed heights have made the application of packing to large-diameter, high-pressure distillation towers more common. A properly designed packed bed system (packing, liquid distributors, vapor distributors) can be an excellent choice for debottlenecking existing distillation towers.